45 research outputs found

    Studies on mineral dust using airborne lidar, ground-based remote sensing, and in situ instrumentation

    Get PDF
    © 2018 The Author(s). Published by EDP Sciences. This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (http://creativecommons.org/licenses/by/4.0/).In August 2015, the AER-D campaign made use of the FAAM research aircraft based in Cape Verde, and targeted mineral dust. First results will be shown here. The campaign had multiple objectives: (1) lidar dust mapping for the validation of satellite and model products; (2) validation of sunphotometer remote sensing with airborne measurements; (3) coordinated measurements with the CATS lidar on the ISS; (4) radiative closure studies; and (5) the validation of a new model of dustsonde.Peer reviewe

    Monitoring dust particle orientation with measurements of sunlight dichroic extinction

    Get PDF
    © 2021 COMECAP CONFERENCE. All rights reserved. No part of this book may be reproduced or transmitted in any form or by any means, electronic, mechanical, photocopying or otherwise, without the prior written permission of the author.Alignment of irregularly shaped dust aerosols leading to linear dichroism has been reported in atmospheric layers. The present study intents to quantify the excess linear polarization of direct solar radiation propagating through atmospheric layers, when these contain oriented dust particles. In order to record the linear polarization, we have used the Solar Polarimeter (SolPol). SolPol is an instrument that measures the polarization of direct solar irradiance at 550nm. It is installed on an astronomical tracker in order target the solar disk. Using the measurements, the Stokes parameters are retrieved (I, Q/I, U/I and V/I) with an accuracy of ~1% and precision of 1 ppm. Collocated measurements of a sun-photometer (Aerosol Robotic Network; AERONET) and lidar are used to quantify the Aerosol Optical Depth (AOD) and identify the vertical distribution of dust layers, respectively. We will present indications of dust particle orientation recorded at the PANGEA station in the island of Antikythera, Greece, and at Nicosia, Cyprus during the preparatory phase for the ASKOS campaign in July 2021. The relation of the linear polarization of the solar irradiance to other optical properties of the dust layer is investigated

    Est-ce qu'une forme presque sphérique est "LE NOUVEAU NOIR" pour la fumée?

    Get PDF
    International audienceWe present smoke lidar measurements from the Canadian fires of 2017. The advected smoke layers over Europe are detected at both tropospheric and stratospheric heights, with the latter presenting non-typical values of the Linear Particle Depolarization Ratio (LPDR) with strong wavelength dependence from the UV to the Near-IR. Specifically, the LPDR values are of the order of 22, 18 and 4% at 355, 532 and 1064 nm respectively. In an attempt to interpret these results, we apply the hypothesis that smoke particles have near-spherical and/or more complicated shapes. Scattering calculations with the T-matrix code revealed that the near-spherical shape is able to reproduce the observed LPDR and LR values of the stratospheric smoke particles at the three measurement wavelengths.Nous présentons les mesures du lidar de fumée des incendies canadiens de 2017. Les couches de fumée advectées sur l'Europe sont détectées à la fois à des hauteurs troposphériques et stratosphériques, ces derniÚres présentant des valeurs atypiques du rapport de dépolarisation linéaire des particules (LPDR) avec une forte dépendance de longueur d'onde de l'UV au proche IR. Plus précisément, les valeurs LPDR sont de l'ordre de 22, 18 et 4% à 355, 532 et 1064 nm respectivement. Pour tenter d'interpréter ces résultats, nous appliquons l'hypothÚse que les particules de fumée ont des formes quasi sphériques et/ou plus complexes. Les calculs de diffusion avec le code de la matrice T ont révélé que la forme quasi-sphérique est capable de reproduire les valeurs LPDR et LR observées des particules de fumée stratosphériques aux trois longueurs d'onde de mesure

    Retrieval of ice-nucleating particle concentrations from lidar observations and comparison with UAV in situ measurements

    Get PDF
    Aerosols that are efficient ice-nucleating particles (INPs) are crucial for the formation of cloud ice via heterogeneous nucleation in the atmosphere. The distribution of INPs on a large spatial scale and as a function of height determines their impact on clouds and climate. However, in situ measurements of INPs provide sparse coverage over space and time. A promising approach to address this gap is to retrieve INP concentration profiles by combining particle concentration profiles derived by lidar measurements with INP efficiency parameterizations for different freezing mechanisms (immersion freezing, deposition nucleation). Here, we assess the feasibility of this new method for both ground-based and spaceborne lidar measurements, using in situ observations collected with unmanned aerial vehicles (UAVs) and subsequently analyzed with the FRIDGE (FRankfurt Ice nucleation Deposition freezinG Experiment) INP counter from an experimental campaign at Cyprus in April 2016. Analyzing five case studies we calculated the cloud-relevant particle number concentrations using lidar measurements (n250,dry with an uncertainty of 20 % to 40 % and Sdry with an uncertainty of 30 % to 50 %), and we assessed the suitability of the different INP parameterizations with respect to the temperature range and the type of particles considered. Specifically, our analysis suggests that our calculations using the parameterization of Ullrich et al. (2017) (applicable for the temperature range −50 to −33 ∘C) agree within 1 order of magnitude with the in situ observations of nINP; thus, the parameterization of Ullrich et al. (2017) can efficiently address the deposition nucleation pathway in dust-dominated environments. Additionally, our calculations using the combination of the parameterizations of DeMott et al. (2015, 2010) (applicable for the temperature range −35 to −9 ∘C) agree within 2 orders of magnitude with the in situ observations of INP concentrations (nINP) and can thus efficiently address the immersion/condensation pathway of dust and nondust particles. The same conclusion is derived from the compilation of the parameterizations of DeMott et al. (2015) for dust and Ullrich et al. (2017) for soot.Peer reviewe

    A First Case Study of CCN Concentrations from Spaceborne Lidar Observations

    Get PDF
    We present here the first cloud condensation nuclei (CCN) concentration profiles derived from measurements with the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) aboard the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO), for different aerosol types at a supersaturation of 0.15%. CCN concentrations, along with the corresponding uncertainties, were inferred for a nighttime CALIPSO overpass on 9 September 2011, with coincident observations with the Facility for Airborne Atmospheric Measurements (FAAM) BAe-146 research aircraft, within the framework of the Evaluation of CALIPSO’s Aerosol Classification scheme over Eastern Mediterranean (ACEMED) research campaign over Thessaloniki, Greece. The CALIPSO aerosol typing is evaluated, based on data from the Copernicus Atmosphere Monitoring Service (CAMS) reanalysis. Backward trajectories and satellite-based fire counts are used to examine the origin of air masses on that day. Our CCN retrievals are evaluated against particle number concentration retrievals at different height levels, based on the ACEMED airborne measurements and compared against CCN-related retrievals from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensors aboard Terra and Aqua product over Thessaloniki showing that it is feasible to obtain CCN concentrations from CALIPSO, with an uncertainty of a factor of two to three

    Linear polarization signatures of atmospheric dust with the SolPol direct-sun polarimeter

    Get PDF
    Dust particles in lofted atmospheric layers may present a preferential orientation, which could be detected from the resulting dichroic extinction of the transmitted sunlight. The first indications were provided relatively recently on atmospheric dust layers using passive polarimetry, when astronomical starlight observations of known polarization were found to exhibit an excess in linear polarization, during desert dust events that reached the observational site. We revisit the previous observational methodology by targeting dichroic extinction of transmitted sunlight through extensive atmospheric dust layers utilizing a direct-sun polarimeter, which is capable to continuously monitor the polarization of elevated aerosol layers. In this study, we present the unique observations from the Solar Polarimeter (SolPol) for different periods within 2 years, when the instrument was installed in the remote monitoring station of PANGEA – the PANhellenic GEophysical observatory of Antikythera – in Greece. SolPol records polarization, providing all four Stokes parameters, at a default wavelength band centred at 550 nm with a detection limit of 10−7. We, overall, report on detected increasing trends of linear polarization, reaching up to 700 parts per million, when the instrument is targeting away from its zenith and direct sunlight propagates through dust concentrations over the observatory. This distinct behaviour is absent on measurements we acquire on days with lack of dust particle concentrations and in general of low aerosol content. Moreover, we investigate the dependence of the degree of linear polarization on the layers' optical depth under various dust loads and solar zenith angles and attempt to interpret these observations as an indication of dust particles being preferentially aligned in the Earth's atmosphere

    Vertical profiles of aerosol mass concentration derived by unmanned airborne in situ and remote sensing instruments during dust events

    Get PDF
    In situ measurements using unmanned aerial vehicles (UAVs) and remote sensing observations can independently provide dense vertically resolved measurements of atmospheric aerosols, information which is strongly required in climate models. In both cases, inverting the recorded signals to useful information requires assumptions and constraints, and this can make the comparison of the results difficult. Here we compare, for the first time, vertical profiles of the aerosol mass concentration derived from light detection and ranging (lidar) observations and in situ measurements using an optical particle counter on board a UAV during moderate and weak Saharan dust episodes. Agreement between the two measurement methods was within experimental uncertainty for the coarse mode (i.e. particles having radii  > 0.5”m), where the properties of dust particles can be assumed with good accuracy. This result proves that the two techniques can be used interchangeably for determining the vertical profiles of aerosol concentrations, bringing them a step closer towards their systematic exploitation in climate models

    Advancing the remote sensing of desert dust

    Get PDF
    The irregular shape of mineral dust provides a strong signature on active and passive polarimetric remote sensing observations. Nowadays, advanced lidar systems operating in the framework of ACTRIS are capable of providing quality assured, calibrated multi-wavelength linear particle depolarization ratio measurements, while new developments will provide us more polarimetric measurements in the near future. Passive polarimeters are already part of ACTRIS and their integration in operational algorithms is expected in the near future. This wealth of new information combined with updated scattering databases and sophisticated inversion schemes provide the means towards an improved characterization of desert dust in the future. We present here some examples from the ACTRIS journey on dust research during the last decade, aiming to demonstrate the progress on issues such as: (a) the discrimination of desert dust in external mixtures, (b) the separation and estimation of the fine and coarse particle modes, (c) the synergy of passive and active remote sensing for the derivation of dust concentration profiles, (d) the provision of dust-related CCN and IN particle concentrations for aerosol-cloud interaction studies, (e) the development of new scattering databases based on realistic particle shapes, (e) the application of these techniques on spaceborne lidar retrievals for the provision of global and regional climatological datasets. Future plans within ACTRIS for the evaluation and advancement of the methodologies and retrievals are also discussed, combined with new developments within the framework of the D-TECT ERC Grant

    Aerosol absorption profiling from the synergy of lidar and sun-photometry : The ACTRIS-2 campaigns in Germany, Greece and Cyprus

    Get PDF
    © The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0/).Aerosol absorption profiling is crucial for radiative transfer calculations and climate modelling. Here, we utilize the synergy of lidar with sun-photometer measurements to derive the absorption coefficient and single scattering albedo profiles during the ACTRIS-2 campaigns held in Germany, Greece and Cyprus. The remote sensing techniques are compared with in situ measurements in order to harmonize and validate the different methodologies and reduce the absorption profiling uncertainties.Peer reviewe
    corecore